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Abstract 
 

To address the challenges in critical care 

monitoring, we present a multi-modality bio-signal 

modeling and analysis modeling framework for real-

time human state classification and predication. The 

novel bioinformatic framework is developed to solve 

the human state classification and predication issues 

from two aspects: a) achieve 1:1 mapping between the 

bio-signal and the human state via discriminant 

feature analysis and selection by using probabilistic 

principle component analysis (PPCA); b) avoid time-

consuming data analysis and extensive integration 

resources by using Dynamic Bayesian Network (DBN). 

In addition, intelligent and automatic selection of the 

most suitable sensors from the bio-sensor array is also 

integrated in the proposed DBN.  

 

1. Introduction 
In many outdoor (remote/long distance) medical 

diagnosis and healthcare applications, such as the 

monitoring of hemorrhagic shock from trauma which is 

the primary cause of death in battlefield, the medical 

monitors currently used are unsuitable as they are 

designed only for collecting and reporting discrete 

physiologic data. Also, the data collected by the current 

monitoring systems are mostly confined to standard 

vital signs which have dubious value in assessing the 

severity of patient’s states. Although some considerable 

work [1] [2] to date has been made on investigating the 

feasibility of fusing multi-modality low-level bio-

signals and using bioinformatic methods to assess and 

predict patient’s physiological state for medical/health 

care monitoring and treatment, there are a number of 

remaining challenges.  

To address the above challenges, we propose a 

wireless, real-time, portable, and wearable critical care 

monitoring system and a multi-modality bio-signal 

analysis framework for patient’s physiological state 

assessment and classification. The architecture of the 

proposed system is shown in Figure 1. In the system, a 

set of low-level physiological, behavioral, and 

environmental sensors is selected to collect low-level 

bio-signals of a patient (e.g. a wounded soldier in 

battlefield). A central processing unit receives the bio-

signals via a wireless module (e.g. ZigBee). These 

collected bio-signals will be processed and analyzed at 

the central processing unit for patient’s physiological 

status modeling, classification, and predication. After 

the bio-signal pre-processing, distinctive features of the 

bio-signals will be extracted via feature selection and 

feature discrimination analysis, and then sent to a 

Dynamic Bayesian Network for real-time physiological 

state classification and predication. The results will be 

sent to a doctor wirelessly for diagnosis and treatment. 

At the same time, these bio-signals and the assessment 

results will be transmitted to a remote medical center 

for other doctors’ review and data recording. During 

the monitoring, the central processing unit can also 

receive data (e.g. personal profile and illness records) 

from a remote medical center. 

 
Figure Figure Figure Figure 1111 A wireless, portable, wearable critical care  A wireless, portable, wearable critical care  A wireless, portable, wearable critical care  A wireless, portable, wearable critical care 

monitoring systemmonitoring systemmonitoring systemmonitoring system    

 

2. Bio-signal collection  
Since medical and healthcare monitoring 

environments are very dynamic and the assessment 

(e.g. hemorrhage inspection of trauma patients in 

battlefield) is a very challenging and complex task, one 
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bio-measurer is obviously not enough to collect 

suitable physiologic signal for 1:1 mapping between 

bio-signal and patient’s state. Only a set of bio-

measures working together can provide the possibility 

of 1:1 mapping. To do so, we propose to integrate 

seven different types (electromyogram (EMG), 

electrocardiograph (ECG) as shown in Figure 2, 

photoplethysmogram (PPG), galvanic skin response 

(GSR), perspiration, behavior, and environment) 

sensors into our proposed wearable sensing device for 

the collection of patient’s low-level bio-signals while 

recording the environmental changes (e.g. temperature 

changes). All these non-intrusive sensors can be pasted 

on an arm belt, or a chest strap, or a glove, which will 

not affect the action of the inspected patient.  

 
Figure Figure Figure Figure 2222    ECG signalECG signalECG signalECG signal    

3. Bio-signal analysis and feature selection 
One of the most common ways of processing bio-

signals is to use feature analysis in time domain. Given 

a set of bio-signals collected from different sensors, it 

is very important to find a subset of critical features 

that can effectively describe patient’s state and improve 

the accuracy of state classification. We believe that the 

accurate classification of patient’s state should be 

based on the two following conditions: the ability to 

distinguish between states to each other, and an 

accurate feature model of each state that should be 

robust to different people and other types of state 

during the monitoring. To achieve these goals, we 

propose to incorporate the multi-sensor information 

from the context of each state with probabilistic 

principle component analysis (PPCA). Two types of 

context (spatial and temporal) are considered. 

The distribution of the bio-signal of the stage k can 

be represented by a Gaussian with the mean vector kµ  

and covariance matrix kC : 

              ),;()|( )()(
kk
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where l is the label of the current state and 
)(t

z  is the 

measurement vector (a window of multi-sensor high-

dimensional bio-signals centralized at time t). Principle 

component analysis (PCA) is famous in its strong 

capability in representing complex data structures for 

discriminant feature extraction, but it is only one shot 

of the state in spatial domain without any variation in 

temporal. The more robust representation is named 

PPCA model [3] due to its capability of considering the 

features in both spatial and temporal domains.    
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where kW  is a kk qd ×  matrix, kd  is the 

dimensionality of z , and kk qd << . This model 

provides a good balance between the representation 

accuracy and the complexity. PPCA for a stage (say k 

stage) is estimated from a set of training data beginning 

from 
),1( k

z , …, ),( ktz . Here 
),( kt

z  is the vector of bio-

signals of the stage collected at time t.  

According to [3], the maximum likelihood 

estimation of PPCA can be computed as follows: 
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where k,1λ , …, kd ,λ  are the eigenvalues arranged in 

the descending order of the observation covariance 

matrix: 
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Let kv ,1 , …, kdv ,  be the corresponding eigenvectors. 

kqV ,  is the kk qd ×  matrix whose columns are kv ,1 , …, 

kqv , , kq,Λ  is the diagonal matrix whose diagonal 

elements are k,1λ , …, kd ,λ  and R is an arbitrary 

kk qq ×  orthogonal matrix. The covariance matrix can 

be expressed as: 
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where k,1λ , …, kq,λ  are the variances of the first q  

principal components, 2
kσ  is the average of the 

variances of the remaining kk qd − . For these states, 

their difference between each other is maximized by 

using PPCA. The features constructed by PPCA are 

then sent to a Dynamic Bayesian Network (DBN) for 

modeling (training stage) or state classification (on-line 

stage). 

 

4. Human state modeling and classification  
We propose a probabilistic framework based on 

Dynamic Bayesian Network (DBN) for modeling and 
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predicting patient’s state. A DBN is a probabilistic 

paradigm that explicitly models random variables and 

their spatial and temporal dependences. In addition, it 

allows patient’s state classification from different 

modalities to be systematically represented and their 

impacts on patient’s state to be propagated and 

integrated. A DBN is a directed acyclic graph 

consisting of nodes and directed links among the 

nodes.  While nodes represent random events, the links 

characterize probabilistic dependencies among the 

nodes. Specifically, a link to a node indicates the 

probabilistic dependence of the node on its parents. 

 

4.1 Human state modeling 

The first step for DBN modeling is to identify those 

hypothesis events and group them into a set of mutually 

exclusive patient’s situations to form the target 

hypothesis variables. The second step is to identify the 

observable data that may reveal something about the 

hypothesis variables and then group them into 

information variables. Typical factors that affect the 

patient’s state may include the environmental context, 

the patient’s profile, and the patient’s physical 

condition. Since patient’s state develops over time, it is 

important to model the temporal evolution of patient’s 

state. In general, a Dynamic Bayesian Network is made 

up of interconnected time slices of static Bayesian 

Networks, and the relations between two consecutive 

time slices are modeled by a Hidden Markov model.  

 
Figure Figure Figure Figure 3333 A  A  A  A probabilistic model based on probabilistic model based on probabilistic model based on probabilistic model based on DBN for DBN for DBN for DBN for 

humanhumanhumanhuman physiological stat physiological stat physiological stat physiological stateeee    classificationclassificationclassificationclassification    

Putting all of these factors together, the DBN for 

modeling the patient’s state is constructed as shown in 

Figure 3. The target node in this model is patient’s state 

and the nodes above the target node represent various 

factors that could affect patient’s state. The nodes 

below the target node represent sensor measurements 

reflecting patient’s state. These nodes are collectively 

referred to as measurement variables.  

More formally, we assume a prior distribution over 

models structures as )(MP and a prior distribution 

over parameters for each model structure )|( MP θ , a 

data set D is used to form a posterior distribution over 

models using Bayes rule: 
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where the uncertainty in the parameters is considered. 

For a given model structure, the posterior distribution 

over the parameters can be computed: 
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4.2 Model parameterization 

Once the topology of the model has been created, 

the next task is to parameterize the model. 

Quantitatively, a DBN uses conditional probability 

distributions (CPD) to depict the relations among 

various nodes. The CPDs of a DBN can be either 

learned from training data or specified subjectively by 

domain experts. In case of multiple causes for a single 

event, certain casual-independence assumptions [5] 

may be used to simplify the parameterization. The 

subjectively specified network can later be refined by 

the available training data using one of the existing 

learning methods such as the maximum likelihood 

method. The parameters can be learned by computing: 

                )()|(maxarg* θθθ
θ

PDP=                (10) 

where )(θP  is a prior. When all nodes are observed, 

this computation can be done in a closed-form [4].  

 

4.3 Active sensor selection 
Although a lot of sensors are available in the 

system, the usage of more sensors incurs more cost for 

acquiring information. For making a timely and 

efficient predication on patient’s state, it is important to 

avoid unnecessary or unproductive sensory actions. 

This is accomplished with active sensing. We use 

value-of-information (VOI) to guide the selection of 

sensors. The VOI of a sensor set is defined as the 

difference in the maximum expected utilities with and 

without the information collected from this set. It 

evaluates how valuable a sensor set is by considering 

both the benefit on accurate modeling and the cost of 

using the sensors.  

 
4.4 Human state classification 

Given the parameterized patient’s state model, 

patient’s state inference can start as soon as the nodes 

representing contextual variables and the nodes for 

state measurements are instantiated. The model 

systematically propagates the impacts of the 

instantiated nodes and estimates their impacts on the 
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patient’s state node by updating its probability. 

Specifically, three streams of information, one travels 

bottom-up from the state measurements, one travels 

top-down from the contextual variables, and one travels 

from left to right, converge in the state node and then 

update the probability of the patient’s state using a 

probabilistic inference method such as the junction tree 

method. Given an estimate of patient’s state, we can 

then use the variations of patient’s state to 

predict/classify the current state of the patient. Assume 

a set of observations },...,{ 11 −= tYYD , we can predict 

the next observation, tY , based on the data and DBN 

models with Bayesian predication: 

  ∫= dMdDMPDMPDMYPDYP tt θθθ )|(),|(),,|()|(  (11) 

5. Preliminary results 
We designed bio-experiments to verify the 

effectiveness and efficiency of our proposed human 

physiological state classification and predication 

scheme. First, laboratory experiments (trials) of various 

hemorrhage situations (four levels/classes from 

mitigative to heavy were defined in our tests) have 

been performed to 20 human subjects with a chest strap 

and an arm-belt to attach all bio-sensors on human 

body. During the tests, the physiological signals and 

the associated behaviors of the human subjects, and the 

environment parameters were recorded. 300 data sets 

for a three-day period of observations were recorded 

and chosen for our study. Totally 927 states (all belong 

to Level 1 to 4) were manually labeled for these data 

sets as ground truth. 100 data sets including 323 states 

were chosen randomly for training. The other data (200 

data sets with 604 states) were used for testing. For 

performance comparison, we also implemented Linear 

discriminant analysis (LDA) and PCA to compare with 

PPCA. The ROC curves of using LDA, PCA, and 

PPCA features together with two classifiers (DBN and 

support vector machine) for Situation Level 4 (the most 

severity) classification are shown in Figure 4 and 

Figure 5 respectively. From these figures, we can see 

that PPCA-based classifiers have the best performance 

for human state classification. Similar results for 

Situation Level 1, 2, and 3 classification were 

observed.  
Table 1 Experimental resultsTable 1 Experimental resultsTable 1 Experimental resultsTable 1 Experimental results    

Severity 

level 

State 

No. 

Error rate 

(SVM) 

Error rate 

(BN) 

Error rate 

(DBN) 

Level 1  203 0.27 0.28 0.21 

Level 2 142 0.22 0.21 0.15 

Level 3 134 0.28 0.26 0.18 

Level 4 125 0.31 0.27 0.19 

 For performance comparison, we also implemented 

a static Bayesian Network (BN) and used it to compare 

with support vector machine (SVM) and DBN. The 

comparison results of using SVM, BN, and DBN with 

PPCA features for human state classification are briefly 

summarized in Table 1. From the table, we can see that 

compared with SVM and BN, there has near 30% 

improvement on accuracy by using DBN. 

 
Figure Figure Figure Figure 4444 ROC curve ROC curve ROC curve ROC curvessss by using DBN by using DBN by using DBN by using DBN    

   
Figure Figure Figure Figure 5555 ROC curve ROC curve ROC curve ROC curvessss by using SVM by using SVM by using SVM by using SVM    

6. Conclusion 
We have presented an innovative scheme for real-

time human physiological state classification and 

predication via low-level bio-signal analysis and 

modeling. The feasibility and effectiveness of the 

proposed scheme have been validated by our 

preliminary test results. 
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